A minmax principle for nonlinear eigenproblems depending continuously on the eigenparameter

نویسنده

  • Heinrich Voss
چکیده

Variational characterizations of real eigenvalues of selfadjoint operators on a Hilbert space depending nonlinearly on an eigenparameter usually assume differentiable dependence of the operator on the eigenparameter. In this paper we generalize these results to nonlinear problems which depend only continuously on the parameter. This result is applied to a class of variational eigenvalue problems which in particular contains the vibrations of plates with attached masses. Dedicated to Ivo Marek on the occasion of his 75th birthday

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Characterization of Eigenvalues of Nonlinear Eigenproblems

In this paper we survey variational characterizations of eigenvalues of nonlinear eigenproblems, i.e. generalizations of Rayleigh’s principle, the minmax characterization of Poincaré, and the maxmin characterization of Courant, Fischer and Weyl to eigenvalue problems containing the eigenparameter nonlinearly. In this note we consider the nonlinear eigenvalue problem

متن کامل

A Rational Spectral Problem in Fluid–solid Vibration

In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparin...

متن کامل

Locating Real Eigenvalues of a Spectral Problem in Fluid-solid Type Structures

Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a power...

متن کامل

Variational Principles for Eigenvalues of Nonlinear Eigenproblems

Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert spaceH. Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending ...

متن کامل

Preconditioned Eigensolvers for Large-scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. I. Conjugate Gradient Methods

Preconditioned conjugate gradient (PCG) methods have been widely used for computing a few extreme eigenvalues of large-scale linear Hermitian eigenproblems. In this paper, we study PCG methods to compute extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009